

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

Requirements Elicitation and Elicitation Technique Selection:

A Model for Two Knowledge-Intensive Software Development Processes

Ann M. Hickey Alan M. Davis
ahickey@uccs.edu adavis@uccs.edu

 University of Colorado at Colorado Springs

Abstract

By its very nature, software development consists of

many knowledge-intensive processes. One of the most
difficult to model, however, is requirements elicitation.
This paper presents a mathematical model of the
requirements elicitation process that clearly shows the
critical role of knowledge in its performance. One meta-
process of requirements elicitation, selection of an
appropriate elicitation technique, is also captured in the
model. The values of this model are: (1) improved
understanding of what needs to be performed during
elicitation helps analysts improve their elicitation efforts,
(2) improved understanding of how elicitation techniques
are selected helps less experienced analysts be as
successful as more experienced analysts, and (3) as we
improve our ability to perform elicitation, we improve the
likelihood that the systems we create will meet their
intended customers’ needs. Many papers have been
written that promulgate specific elicitation methods. A
few have been written that model elicitation in general.
However, none have yet to model elicitation in a way that
makes clear the critical role played by knowledge. This
paper’s model captures the critical roles played by
knowledge in both elicitation and elicitation technique
selection.

1. Introduction

Requirements elicitation is recognized as one of the
most critical, knowledge-intensive activities of software
development [1]; poor execution of elicitation will almost
guarantee that the final project is a complete failure. Since
project failures are so rampant [2], it is quite likely that
improving how the industry performs elicitation could
have a dramatic effect on the success record of the
industry [3]. Improving requirements elicitation requires
us to first understand it. Although many papers have been
written that define elicitation, or prescribe a specific
technique to perform during elicitation, nobody has yet
defined a unified model of the elicitation process that
emphasizes the role of knowledge.
 0-7695-1874-5/03

To better understand the importance of the current

paper, let us contrast its goal with the goal of the many
dozens of writings, e.g., [4, 5, 6], that present a specific
methodology for elicitation broken down into multiple
steps. Studying the steps provides the reader with an
understanding of one particular way of doing elicitation.
Some writings, e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15], even
provide limited insight into when a methodology or
specific elicitation technique might or might not be
applicable. This paper provides a model for elicitation in
general. It then extends that model to include a model of
the elicitation technique selection process. This technique
selection model will serve as the basis for future research
to integrate the tacit knowledge expert analysts1 use
during elicitation and elicitation technique selection into a
knowledge-based system for less experienced analysts to
help them select the most appropriate technique for their
situation. Better technique selection will improve the
quality of the requirements elicitation process and
increase the success of software development projects.

In this paper we use specific definitions for some
terms:

• Requirements Process. The activities that when
performed result in an understanding and
documentation of the desired external behavior (i.e.,
the requirements) of a system.

• Process Model. A representation showing the
processes to be performed in order to achieve some
well-defined goal.

• Technique. A documented series of steps along with
rules for their performance and criteria for verifying
completion. A technique usually applies to a single
process in a process model. Sometimes includes a
notation and/or a tool.

• Methodology. A process model, along with
documented techniques and/or tools to support each
process in the model.

1 Generically, any individual who performs elicitation. Also known by
many other names, e.g., requirements engineer.
 $17.00 (C) 2003 IEEE 1

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

2. Overview of the research domain

2.1. Software development

Software development is the activity of creating a
software system that when used, solves some hitherto
unsolved problem. Classic software development follows
a well-defined series of phases, typically called a
waterfall model [16] (see Figure 1). More commonly,
software development is performed iteratively, resulting
in a time series of successively more sophisticated
products (see Figure 2). In the former case, requirements
activities are performed ostensibly at the beginning of the
life cycle. However, with the inevitable onslaught of
constantly changing needs, requirements activities need to
be performed regularly. In the latter case, requirements
activities are performed ostensibly at the beginning of
each iteration. As in the former case, requirements change
constantly. However, if the iterations are close enough
together, it is usually easier to defer requirements changes

 0-7695-1874-5/0

to the beginning of a subsequent iteration and thus little
time need be expended within any iteration performing
additional requirements activities.

An
Unsolved
Problem

A
Software
Solution

Requirements

Design

Coding &
Unit Testing

Integration
Testing

System
Testing

Software Development

Figure 1. Waterfall model of software development
An
Unsolved
Problem

Requirements

Design

Coding & Unit Testing

Integration Testing

System Testing

Software Development

S o f t w
 a r e S o l u t I o n s

Requirements

Design

Coding & Unit Testing

Integration Testing

System Testing

. . .
Requirements

Design

Coding & Unit Testing

Integration Testing

System Testing

Figure 2. Iterative model of software development
3 $17.00 (C) 2003 IEEE 2

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

Elicitation

Modeling

Triage

Specification

Verification

0%

25%

50%

75%

100%

time -->

%
 o

f R
eq

ui
re

m
en

ts
 A

ct
iv

iti
es

Figure 3. Parallel model of the requirements process

Elicitation

Triage

Modeling

Specifi-
cation

Verifi-
cation

Users, Customers,
& Other

Stakeholders

Unsolved
Problems

Candidate
Requirements

Selected
Requirements Documented,

Modeled
&

Organized
Requirements

Verified
Require-

ments

Problem & Solution
Domains

Problem &
Domain

Knowledge

Domain
Knowledge

Figure 4. Data flow among requirements activities

2.2. Requirements Process

The requirements process is also often described as a
series of activities such as elicitation, modeling, triage,
specification, and verification2:

2 There is little uniformity in the industry concerning names given to
these activities [17]. For example, to paraphrase [18], Davis [8] defines
two activities: problem analysis and product description. Graham [19]
defines two activities: requirements elicitation and requirements
analysis. Zave [20] defines three activities: elicitation, validation, and
specification. Jarke and Pohl [21] define three activities: elicitation,
expression, and validation. Later, Pohl [22] defines four activities:
elicitation, negotiation, specification/documentation, and validation/
verification. Finally, Thayer and Dorfman [23] define five activities:
elicitation, analysis, specification, verification and management.

 0-7695-1874-5/
• Elicitation. Learning, uncovering, extracting, sur-
facing, and/or discovering needs of customers,
users, and other potential stakeholders.

• Modeling. Creating and analyzing models of
requirements, with the goals of increasing
understanding and searching for incompleteness
and inconsistency.

• Triage. Determining which subset of the require-
ments ascertained by elicitation are appropriate to
be addressed in specific releases of a system.

• Specification. The documentation of the desired ex-
ternal behavior of a system.

• Verification. Determining the reasonableness,
consistency, completeness, suitability, and lack of
defects in a set of requirements.
03 $17.00 (C) 2003 IEEE 3

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

The majority of existing models of the requirements
process show it as an ordered sequence of activities. In
reality, requirements activities are not performed
sequentially, but in parallel as shown in Figure 3. Other
models of the requirements process take a different view
or add additional information. Figure 4 (adapted from
[24]) shows how information flows among the activities
of requirements. Playle and Schroeder [25] emphasize the
automated tools that support each requirements activity.
Others model the requirements process from an
input/output perspective, e.g., [10]. Gaska and Gause [26]
add controls and mechanisms to their model while
Hofmann and Lehner [3] explore how team knowledge,
resources, and processes contribute to the success of the
requirements process. Other models of the requirements
process focus on a specific methodology (e.g., Volere
Requirements Process Model [27]).

2.3. Requirements elicitation

As mentioned earlier, elicitation is all about
determining the needs of stakeholders. Most models of
requirements elicitation focus on specific methodologies
or techniques. For example, the Robertsons’ Volere
requirements methodology includes a detailed process
model of its requirements elicitation activities with inputs,
outputs, and recommended techniques for each activity
[27]. Several researchers, e.g., [28, 29], have developed
specific process models that define how to use scenarios
for requirements elicitation. Sutcliffe and Ryan [30]
present a model of elicitation that combines scenarios,
prototypes and design rationale. Sommerville et al. [31]
describe their approach for using viewpoints to elicit
requirements. Some of the most detailed elicitation
process models describe collaborative requirements
workshops such as JAD [6].

Very few general models of elicitation exist [32].
Some authors provide overall principles for elicitation,
e.g., [33, 34]. Others describe general approaches (e.g.,
top-down vs. bottom-up). A few focus on one specific
view of the process. Maciaszek [35] describes the
influences during requirements elicitation by showing
how analysts, domain experts, and customers interact to
provide domain knowledge and use case requirements,
which are used to produce business class and use case
models. Dean et al. [36] also take a model-centric view in
their process model of Collaborative Requirements
Elicitation and Validation (CREV), which defines how
activity, data, and scenario models work together with
prototypes to generate requirements. Gottesdiener [1] (a)
focuses on requirements workshops, (b) presents models
of the inputs/outputs and how various requirements
models can be used to answer the ‘six great focus
questions’ (who, what, why, when, where, how), and (c)

 0-7695-1874-5/0

provides a few sample process models. Another general
model of elicitation defines paths of communication that
ultimately result in increased knowledge of requirements
to be addressed. Adapted from [36], Figure 5 shows how
specific elicitation techniques exercise various
communication paths between parties. One clockwise
circuit around the wheel represents one step of an
elicitation methodology. Our view is that the paths around
this wheel should not be predetermined, but that each step
(i.e., next segment of the path) be selected as a function of
what has already been learned (known requirements), as
well as current characteristics of the problem domain,
solution domain, and project. Browne and Rogich [32]
also look at a communication-based model of elicitation,
but focus on the cognitive aspects of user/analyst
interaction.

2.4. Requirements elicitation technique selection

Requirements elicitation is generally performed using

an elicitation methodology or a series of techniques.
Many such methodologies and techniques exist, all with
the common aim to assist analysts in understanding needs
[13]. Although some analysts think that just one
methodology or just one technique is applicable to all
situations, one methodology or technique cannot possibly
be sufficient for all conditions [10, 13, 14, 37, 38, 39].

User Community

User Groups

User Reps

Analyst-
Developer

Team

 Busin
ess

Scenarios

UseCasesUser Priorities

Prototypes

Human

Int
erf

ac
es

Survey User Needs

IS
 P

la
ns

 &
 S

ch
ed

ule
s

JAD

Interviews

Data Model

Figure 5. Communication channels in elicitation

Analysts select a particular elicitation technique for
any combination of four reasons: (1) It is the only
technique that the analyst knows, (2) It is the analyst's
favorite technique for all situations, (3) The analyst is
following some explicit methodology, and that
methodology prescribes a particular technique at the
current time, and (4) The analyst understands intuitively
that the technique is effective in the current circumstance.
3 $17.00 (C) 2003 IEEE 4

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

Clearly the fourth reason demonstrates the most
"maturity" by the analyst. We hypothesize that such
maturity leads to improved understanding of stakeholders'
needs, and thus a higher likelihood that a resulting system
will satisfy those needs. Unfortunately, most practicing
analysts do not have the insight necessary to make such
an informed decision, and therefore rely on one of the
first three reasons.

3. A new model of requirements elicitation

3.1. Introduction to the new model

In order to improve our knowledge of the elicitation

process, elicitation methodologies and techniques, and the
elicitation technique selection process, we propose a new
unified model of elicitation. In previous sections, we
defined the scope of elicitation, and presented other
researchers’ models of elicitation. As we saw, two classes
of models have been documented: (a) those that captured
a specific methodology or technique, and (b) those that
modeled elicitation in general. In the first class, the
models possess a variety of weaknesses:

1. Each describes a specific elicitation methodology or
technique

2. Each prescribes a specific series of steps, each with
its own predefined technique. In effect they are
saying “one size [methodology] fits all.”

3. Each fails to model either the technique selection
process or the situational characteristics that drive
that decision process.

In the second class, the models possess different
weaknesses:

4. Most have underlying, but unstated, assumptions.
One noteworthy exception is [32].

5. None discuss the role of knowledge in performing
elicitation or in selecting elicitation techniques.
This knowledge includes (a) the current problem,
solution, and project characteristics, (b) the
awareness of which requirements are known and
which are still to be determined, and (c) knowledge
of the relationship of the current problem, solution,
and project characteristics and the state of the
requirements to the selection of an elicitation
technique.3

To overcome these weaknesses, Figure 6 expands the
elicitation activity from Figure 4 by adding a new
elicitation technique selection process along with its
driving characteristics. Note that the elicitation technique
selection process is driven by problem, solution, and

3 And to make matters worse, guidance of this type is not
even available in current textbooks.

 0-7695-1874-5/0

project domain characteristics as well as the state of the
requirements (The “right” technique to apply in a given
situation must be a function of what requirements we
already know and what requirements we still need to
know; after all, different techniques are good at
uncovering different kinds of requirements).

Elicitation

Users, Customers,
& Other

Stakeholders

Unsolved
Problems

Candidate
Requirements

Problem &
Solution
Domains

Problem &
Domain

Knowledge

ElicitationElicitation
TechniqueTechnique
SelectionSelection

Project
Domain

Project
Situation

Problem &
Domain
Situation

Elicitation
Technique

Known
Requirements

Figure 6. Details of elicitation activities

3.2. The model

This section of the paper describes a model of

elicitation that represents a generalization of all known
elicitation methodologies and techniques. It

• Explicitly highlights the role knowledge plays in
performing both elicitation and elicitation technique
selection.

• Provides a unified framework for understanding the
purpose and role of requirements elicitation in
software development,

• Describes how any elicitation methodology could
be represented in terms of that model,

• Shows what assumptions existing elicitation
methodologies make about the situation,

• Identifies how easily one can tailor existing
methodologies for unique situations, and

• Shows how one can create new elicitation
methodologies easily, by defining situational
characteristics and then observing and recording the
resultant instances of methodologies.

On any project, an analyst performing elicitation
moves through a series of activities. The purpose of each
activity is to bring the parties closer and closer to a
common understanding of the requirements they wish to
address. This series of activities can be viewed as the
application of a series of mathematical functions, elicit1,
elicit2, . . . , each of which creates new requirements by
3 $17.00 (C) 2003 IEEE 5

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

applying an elicitation technique. Thus, each step of
elicitation can be defined as

eliciti(Ri, Si, ti) Ri+1, Si+1
That is, at step i of the elicitation process, elicitation
applies technique ti when situation Si exists and Ri
captures the current state of knowledge of the
requirements we need to understand. The result is a new
state of the requirements Ri+1 and a new situation Si+1.
Note that ti ε T, the set of all known elicitation techniques.

Clearly this slice of the model addresses problems 1
and 2 above; the methodology and the techniques applied
at each step are not predefined, but instead the elicitation
technique at each step should be selected because it is the
most applicable to the current situation and/or is the most
likely to uncover requirements that are currently absent.
Thus selection of an elicitation technique should consider:

• What requirements are known and what are not yet
known. These are likely to change dynamically
throughout the life of the project. This is
represented in our model as Ri.

• Characteristics of the problem domain. These are
usually static throughout the life of a project.

• Characteristics of the solution domain. These are
likely to change whenever a new type of solution to
the problem is proposed.

• Characteristics of the project. These are likely to
change whenever culture or management changes.
This, along with the previous two characteristics,
are collectively represented in our model as Si.

Elicitation technique selection can be modeled as a
selector function:

σσσσ(Ri, Si, χ(T)) { t ∈ T | t is applicable in situation Si
when the current state of the requirements is Ri}

given characteristics of all elicitation techniques, χ(T).
These characteristics capture the inherent aspects of
elicitation techniques, such as whether they aid in
reducing ambiguity, whether they are effective at helping
people converge on a solution, whether they help resolve
conflict, whether they help to raise new issues, and so on.
They are static and identical for all projects. The goal of
the selector function is to identify the best possible match
between the characteristics of the techniques and the
current state of the requirements and situation. For
example, if the requirements are unclear, techniques that
reduce ambiguity may be helpful.

Since the elicit function requires just one elicitation
technique and the above selector function creates a set of
applicable techniques, we must also define a personal
selector function,

ππππ({t}, P) ti ∈ {t}
where analysts apply their own personal preferences, P, to
select just one technique from the set of applicable
elicitation techniques.

 0-7695-1874-5/03

Thus, requirements elicitation at step i becomes,
eliciti(Ri, Si, π π π π(σσσσ(Ri, Si, χ(T)), P)) Ri+1, Si+1

Note that this combined function models the combination
of the two bubbles in Figure 6.

3.3. How to use the model

Every requirements elicitation methodology, Μj,

containing n steps can be characterized as an instance of a
series of n elicit steps, i.e.,

Μj = elicit1, elicit2, . . . elicitn
and the state of the requirements (i.e., those that have
been uncovered and those that have not been uncovered)
as a result of applying methodology Mj are.
Rn(Mj) = elicitn (...(elicit2 (elicit1 (R1, S1, tj1), tj2)...), tjn)
where R1 is the state of the requirements at the beginning
of the project, S1 is the situation at the beginning of the
project, and tj1, tj2, . . . tjn, are the steps prescribed by
methodology Μj.

Notice how the function highlights the assumptions
that every methodology makes. When the methodology
states that the analyst should perform some technique ti at
step i, the methodology is making the assumptions that Si
is true and that requirements state is Ri! But given all the
variation among people and problems, how could such an
assumption possibly be made a priori?

To tailor an existing methodology so that it makes
sense, follow this simple procedure at each step i:

1. Examine the state of the requirements, Ri, including
both what requirements are known and what
requirements still need to be discovered

2. Examine the characteristics of the problem, the
solution, and the project, Si.

3. Determine if the technique ti being suggested by the
methodology is a member of σσσσ(Ri, Si, χ(T)). If so,
you should proceed with the application of ti as
prescribed by the methodology.

4. If the technique ti being suggested by the
methodology is not a member of σσσσ(Ri, Si, χ(T)),
then select an alternative technique, i.e., ππππ(σσσσ(Ri, Si,
χ(T)), P)).

To create a new methodology for your unique
situation, or if you do not want to “follow a methodology”
but just want to do elicitation in a way that makes most
sense, follow this simple procedure at each step i:

1. Examine the state of the known requirements, Ri.
2. Examine the characteristics of the problem, the

solution, and the project, Si.
3. Using your personal preferences, P, select a

technique ti out of the set of all applicable
techniques, i.e., apply the function ππππ(σσσσ(Ri, Si,
χ(T)), P)).
 $17.00 (C) 2003 IEEE 6

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

3.4. An example of using the model

The Collaborative Software Engineering Methodology

(CSEM) was created to support incremental development
of complex systems with large, diverse user populations
[36]. CSEM divides the requirements process into six
primary activities (which may be repeated, eliminated, or
otherwise tailored based on the project situation) and
provides specific recommendations on what techniques
and tools can be used to conduct those activities. The
purpose of showing this example is to demonstrate how
any documented methodology can be described in terms
of our model.

The following example describes the first three of the
six steps of the CSEM requirements process using the
terms of our new unified model. It makes a variety of
assumptions, including

• That the selector function, σσσσ, has already been
created. In reality, we have not yet constructed this
function (see later section on future research). This
function will be driven by the static values of χ(T).

• That we are applying CSEM to the first increment
of a new, complex information system.

• That the requirements we need to elicit must
identify the basic objects, functions, and states [8]
of the new system.

For each elicitation step, the example describes the
inputs (Ri, Si), techniques recommended by our model
(assuming σσσσ already exists), and outputs (Ri+1, Si+1)
generated by use of the selected technique. We then
compare our model’s recommendations to those of the
CSEM.
Elicitation Step 1.

1. Assess Requirements (Ri). Since the project has just
begun, we only have a broad definition of project
scope that provides a high-level description of the
desired functions. We do not yet have a common
understanding of the business functions, nor have
we identified which specific business functions will
be included in the project’s scope.

2. Assess Situation (Si). We have a large, diverse user
population with common goals, but unique
operating environments and a variety of legacy
systems providing some of the desired
functionality. We have identified a representative
group of users who can travel to a face-to-face
meeting.

3. Select technique (ti). The technique selection
process, σσσσ, identifies several possible techniques
based on the above characteristics:
• Collaborative workshops rate high because of the

diversity of users and the ability to gather
representatives in one place.

 0-7695-1874-5/0

• Various activity decomposition and modeling
techniques (e.g., IDEF0) also rate high because
of the need to have a common view of business
activities/functions.

• Interviews are another possibility if time is not
an issue and users generally agree on functions.

We apply our personal preferences and select a
collaborative workshop to develop a simple
activity/function hierarchy and agree on which
functions are included in the scope of the project.

4. Perform eliciti(Ri, Si, ti) Ri+1, Si+1. In this case,
let us assume that the collaborative workshop
succeeded in eliciting the new system’s functions.
User representatives now share a common
understanding of those functions and agree on
which functions will be included in the first
increment of the new system.

5. CSEM comparison. The above recommendations
are comparable to the first CSEM requirements
activity, Identify Business Activities, which
recommends use of a Group Support System (GSS)
tool to collaboratively develop an activity hierarchy
or more complete IDEF0 activity model. Note that
the use of our model has highlighted the
assumptions that CSEM has made.

Elicitation Step 2.
1. Assess Requirements (Ri). We have a static view of

the new system’s functions. However, we do not
have a more dynamic, state view of those functions.

2. Assess Situation (Si). All users perform the
identified functions, but they may have very
different processes for doing so. A goal of the new
system is to implement the ‘best practices’ for each
function, so we need to explore process differences
and reach agreement on those ‘best practices.’
Users who are expert in the different processes for
each function have been identified, but they have no
previous requirements elicitation or modeling
experience.

3. Select technique (ti). The technique selection
process again rates collaborative workshops high
because of the need to reach agreement on ‘best
practices.’ Possibilities for capturing dynamic
process/state information include scenarios or use
cases, statecharts, and Petri nets. Because users are
business, not modeling, experts, we apply our
personal preferences and select a collaborative
workshop to elicit scenarios.

4. Perform eliciti(Ri, Si, ti) Ri+1, Si+1. Scenarios
elicited during this step describe the best way to
perform each business function and define the new
system’s states. User representatives agree on
detailed processes for each business function.

5. CSEM comparison. The above recommendations
are comparable to the CSEM requirements activity,
3 $17.00 (C) 2003 IEEE 7

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

Generate Business Scenarios, which recommends
use of a Group Support System (GSS) tool to
collaboratively define and agree upon business
scenarios for each function included in the first
increment.

Elicitation Step 3.
1. Assess Requirements (Ri). We now know function

and state requirements, but we still do not know the
object (data) requirements.

2. Assess Situation (Si). We can use existing legacy
systems to identify current data requirements, but
users will need to reconcile discrepancies between
systems and identify any new data required to
support new functions and states. Users have no
data modeling experience.

3. Select technique (ti). The technique selection
process recommends that we develop a data or class
model to capture object requirements using
information from the legacy systems. It
recommends interviews or a group meeting to
reconcile differences. Based on our personal
preferences, we choose to create a data model and
ask selected users for assistance as needed to
reconcile discrepancies.

4. Perform eliciti(Ri, Si, ti) Ri+1, Si+1. The data
model developed during this step identifies object
requirements. We now know the object, function,
and state requirements identified as needed for this
system. Users agree to these requirements and agree
to proceed with development.

5. CSEM comparison. The above recommendations
are generally comparable to the CSEM
requirements activity, Develop Data Model.
However, in this case, CSEM recommends that
users collaboratively review and reconcile a
preliminary data model (developed by a data
modeling expert) and then provide detailed entity
and attribute meta-data using a Group Support
System (GSS) Data Modeling tool designed to
capture that information from non-modelers [36].

The preceding example demonstrates a variety of
items:

1. We can use it to analyze the CSEM methodology.
For example, the model makes it explicit what
(perhaps) tacit assumptions CSEM is making at
each step. Thus, our model could be used by CSEM
researchers to better understand their own
methodology.

2. We can use it to adapt the CSEM methodology.
Thus, a user of CSEM could utilize our model to
determine (a) the applicability of CSEM to their
situation, (b) reasonable alternatives to the defined
steps of CSEM, and (c) optimal selections among
the alternative techniques recommended as part of
the tailoring advice of CSEM.

 0-7695-1874-5/0

3. We can use it to analyze our model. As we study
CSEM and many other methodologies using our
unified model of elicitation, we will likely discover
weaknesses in our model.

4. We can use it to compare and contrast the
assumptions made by CSEM vs. other
methodologies.

4. Future research

The model defined in this paper has become the basis

for myriad new research directions. A few are introduced
here:

• Taxonomy of Problem, Solution, and Project
Characteristics. This paper highlights the critical
role played by situational characteristics, Si. Now
we need to define all those characteristics, and
organize them in a way to make them easy to
understand and use. This work will be based on
earlier taxonomies documented in [40, 41, 42, 43],
but used for quite different purposes.

• Taxonomy of Requirements Techniques. Once the
problem, solution, and project characteristics have
been defined, we need to develop a taxonomy of
elicitation techniques sensitive to these
characteristics. That is, if two elicitation techniques
are applicable in the same situation, they should
appear in the same place in the taxonomy.

• Implementation of the Selector Functions. We have
begun the implementation of a system that accepts
as input current situational characteristics (i.e.,
those that capture the problem domain, solution
domain, and project domain), and the state of the
known requirements, and outputs the set of
applicable elicitation techniques. It uses a hybrid
approach, combining an essence of both knowledge
management and knowledge engineering. As its use
becomes more widespread, the resultant sharing of
best practices will assist in the increased success
record for software development projects
worldwide.

5. Relationship to other research domains

Knowledge management refers to an organization’s

“efforts to capture, store, and deploy knowledge using a
combination of information technology and business
practices” [44, p. 36] to help organizations compete more
effectively [45]. Knowledge management systems (KMS)
are “information systems designed specifically to
facilitate the sharing and integration of knowledge” [46].
Results of a recent industry survey on KM show a wide
diversity of perceptions ranging from the types of
information that should be included in a KMS, to the
3 $17.00 (C) 2003 IEEE 8

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

cultural and organizational issues with implementing a
successful KM program, to the types of technology and
systems associated with KM (e.g., data
mining/warehousing, executive information systems, and
expert and intelligent agent systems) [46]. The same
diversity is apparent in KM research, which focuses on a
wide range of organizational, cultural, and technical
issues related to knowledge creation, storage/retrieval,
and application [45].

The field of knowledge engineering (KE) is more
specifically focused on the development of
expert/knowledge-based systems and depends heavily on
artificial intelligence research [47]. KE research and
practice include recommended process models for the
development of knowledge-based systems (e.g., [48]) and
guidelines for knowledge acquisition (KA),
representation, and coding of knowledge (e.g., [47, 49,
50, 51]).

While the overlap of the KM, KE and software
development research domains seems obvious,
surprisingly little cross-disciplinary research occurs. KE
researchers continue to highlight areas where KE could
improve KM efforts [44, 47]. Similarly requirements
researchers highlight the need to explore knowledge
acquisition techniques in addition to traditional
requirements elicitation techniques [17, 50, 51]. We
intend to take this advice in several areas. We have
already depended heavily on the KE literature to guide
our future research to develop a knowledge-based system
to guide analysts in selecting elicitation techniques.
Secondly, we will include both requirements elicitation
and knowledge acquisition techniques in our list of
available techniques. Finally, we will depend heavily on
the KM literature to help us address the organizational,
cultural, and change management issues that will surely
arise as part of the implementation of our planned
knowledge-based system.

6. Summary

This paper has introduced a new unified model of

requirements elicitation. Although its significance will be
determined only in the future, our hope is that this formal
model of elicitation becomes the norm among researchers
and practitioners. The model described herein highlights
the critical knowledge required by, and defines the
underlying basis of, an implementation of the elicitation
technique selector function, which when complete, will
enable:

• All (not just the most experienced) analysts will be
able to select elicitation technique based on explicit
knowledge, hitherto considered tacit,

 0-7695-1874-5/0

• Project managers will have an improved
appreciation for the critical role elicitation plays in
overall project success,

• Analysts will be able to compare and contrast the
assumptions and results achieved by the use of any
elicitation technique,

• Analysts will be able to easily tailor existing
methodologies for unique situations,

• Researchers will be forced to explicitly state the
assumptions their elicitation methodologies are
making about the situation at every step,

• Analysts will no longer be bound by pre-defined
methodologies, but instead will be able to create
new elicitation methodologies easily, by defining
situational characteristics and then observing and
recording the resultant instances of methodologies.

7. References

[1] Gottesdeiner, E., Requirements by Collaboration, Addison-
Wesley, 2002.
[2] Standish Group, "The Chaos Report,"
www.standishgroup.com, 1995.
[3] Hofmann, H., and F. Lehner, “Requirements Engineering as
a Success Factor in Software Projects,” IEEE Software, 18, 4
(July/Aug 2001), pp. 58-66.
[4] Gause, D., and G. Weinberg, Are Your Lights On?, Dorset
House, 1990.
[5] Jackson, M., Problem Frames, Addison-Wesley, 2001.
[6] Wood, J., and D. Silver, Joint Application Development,
Wiley, 1995.
[7] Davis, A., "A Taxonomy for the Early Stages of the
Software Development Life Cycle," Journal of Systems and
Software, 8, 4 (September 1988), pp. 297-311.
[8] Davis, A., Software Requirements: Objects, Functions and
States, Prentice Hall, 1993.
[9] Goguen, J., and C. Linde, "Software Requirements Analysis
and Specification in Europe: An Overview," First International
Symposium on Requirements Engineering, IEEE Computer
Society Press, 1993, pp. 152-164.
[10] Kotonya, G., and I. Sommerville, Requirements
Engineering, Wiley, 1998.
[11] Lauesen, S., Software Requirements: Styles and
Techniques, Addison-Wesley, 2002.
[12] Leffingwell, D., and D. Widrig, Managing Software
Requirements, Addison-Wesley, 2000.
[13] Macaulay, L., Requirements Engineering, Springer, 1996.
[14] Maiden, N., and G. Rugg, "ACRE: Selecting Methods for
Requirements Acquisition," Software Engineering Journal, 11, 5
(May, 1996), pp. 183-192.
[15] Wiegers, K., Software Requirements, Microsoft Press,
1999.
[16] Royce, W., “Managing the Development of Large Software
Systems,” WESCON ‘70, 1970; reprinted in IEEE 9th
3 $17.00 (C) 2003 IEEE 9

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

International Conference on Software Engineering, IEEE
Computer Society Press, 1987.
[17] Siddiqi, J., and M. Shekaran, "Requirements Engineering:
The Emerging Wisdom," IEEE Software, 13, 2 (March 1996),
pp. 15-19.
[18] Hickey, A., “Integrated Scenario and Process Modeling
Support for Collaborative Requirements Elicitation,” University
of Arizona Department of Management Information Systems
PhD Dissertation, 1999.
[19] Graham, I., Requirements Engineering and Rapid
Development, Addison-Wesley, 1998.
[20] Zave, P., "Classification of Research Efforts in
Requirements Engineering," ACM Computing Surveys, 29, 4
(April 1997), pp. 315-321.
[21] Jarke, M., and K. Pohl, "Requirements Engineering in
2001: (Virtually) Managing a Changing Reality," Software
Engineering Journal, 9, 6 (June 1994), pp. 257-266.
[22] Pohl, K., Process-Centered Requirements Engineering,
Wiley, 1996.
[23] Thayer, R., and M. Dorfman, Standards, Guidelines, and
Examples on System and Software Requirements Engineering,
IEEE Computer Society Press, 1994.
[24] Loucopoulos, P., and V. Karakostas, System Requirements
Engineering, McGraw Hill, 1995.
[25] Playle, G., and C. Schroeder, “Software Requirements
Elicitation: Problems, Tools, and Techniques,” Crosstalk, 9, 12
(December 1996), pp. 19-24.
[26] Gaska, M., and D. Gause, “An Approach for Cross-
Discipline Requirements Engineering Process Patterns,” Third
International Conference on Requirements Engineering, IEEE
Computer Society, 1998, pp. 182-189.
[27] Robertson, S., and J. Robertson, Mastering the
Requirements Process, Addison-Wesley, 1999.
[28] Hsia, P., et al., “Formal Approach to Scenario Analysis,”
IEEE Software, 11, 2 (March 1994), pp. 33-41.
[29] Holbrook, H., “A Scenario-Based Methodology for
Conducting Requirements Elicitation,” ACM SIGSOFT Software
Engineering Notes, (January 1990), pp. 95-104.
[30] Sutcliffe, A., and M. Ryan, “Experience with SCRAM, a
Scenario Requirements Analysis Method,” Third International
Conference on Requirements Engineering, IEEE Computer
Society Press, 1998, pp. 164-171.
[31] Sommerville, I., et al., “Viewpoints for Requirements
Elicitation: A Practical Approach,” Third International
Conference on Requirements Engineering, IEEE Computer
Society Press, 1998, pp. 74-81.
[32] Browne, G., and M. Rogich, "An Empirical Investigation of
User Requirements Elicitation: Comparing the Effectiveness of
Prompting Techniques," Journal of Management Information
Systems, 17, 4 (Spring 2001), pp. 223-249.
[33] Gause, D., and G. Weinberg, Exploring Requirements:
Quality Before Design, Dorset House, 1989.

 0-7695-1874-5/

[34] Pressman, R., Adaptable Software Model, Preparing for
Software Requirements Elicitation, http://www.rspa.com/-
checklists/reqelicit.html.
[35] Maciaszek, L., Requirements Analysis and System Design,
Addison-Wesley, 2001.
[36] Dean, D., et al., “Enabling the Effective Involvement of
Multiple Users: Methods and Tools for Collaborative Software
Engineering," Journal of Management Information Systems, 14,
3 (Winter 1997-98), pp. 179-222.
[37] Davis, A., and A. Hickey, "Requirements Researchers: Do
We Practice What We Preach," Requirements Engineering
Journal, 2002.
[38] Glass, R., “Searching for the Holy Grail of Software
Engineering,” Communications of the ACM, 45, 5 (May 2002),
pp. 15-16.
[39] Yadav, S., et al., "Comparison of Analysis Techniques for
Information Requirements Determination," Communications of
the ACM, 31, 9 (September 1988).
[40] Alexander, L., and A. Davis, "Criteria for the Selection of a
Software Process Model," Fifteenth IEEE COMPSAC, 1991,
IEEE Computer Society Press, pp. 521-528.
[41] Jorgensen, P., The Use of MM-Paths in Constructive
Software Development, Arizona State University, Department of
Computer Science PhD Thesis, 1985.
[42] Juristo, N., and A. Moreno, Basics of Software Engineering
Experimentation, Kluwer Academic, 2001.
[43] Scharer, S., "Pinpointing Requirements," Datamation, April
1981, pp. 139-154.
[44] Preece, A., et al., “Better Knowledge Management through
Knowledge Engineering,” IEEE Intelligent Systems, (Jan/Feb
2001), pp. 36-42.
[45] Alavi, M., and D. Leidner, “Review: Knowledge
Management and Knowledge Management Systems: Conceptual
-Foundations and Research Issues,” MIS Quarterly, 25, 1
(March 2001), pp. 107-136.
[46] Alavi, M., and D. Leidner, “Knowledge Management
Systems: Issues, Challenges, and Benefits,” Communications of
the Association for Information Systems, 1, 7 (Feb. 1999).
[47] Liebowitz, J., Knowledge Management: Learning from
Knowledge Engineering, CRC Press, 2001.
[48] Rook, F., and J. Croghan, “The Knowledge Acquisition
Activity Matrix: A Systems Engineering Conceptual
Framework,” IEEE Transactions on Systems, Man, and
Cybernetics, 19, 3, (May/June 1989), pp. 586-597.
[49] Forsythe, D., and B. Buchanan, “Knowledge Acquisition
for Expert Systems: Some Pitfalls and Suggestions,” IEEE
Transactions on Systems, Man, and Cybernetics, 19, 3
(May/June 1989), pp. 435-442.
[50] Byrd, T., et al., “A Synthesis of Research on Requirements
Analysis and Knowledge Acquisition Techniques,” MIS
Quarterly, 16, 1 (March 1992), pp. 117-138.
[51] Shaw, M., and B. Gaines, “Requirements Acquisition,”
Software Engineering Journal, May 1996, pp. 149-165.

03 $17.00 (C) 2003 IEEE 10

	HICSS36 2003
	Return to Main Menu

